Fifteen puzzle.

Sasha Patotski

Cornell University

ap744@cornell.edu

November 16, 2015

Last time

Definition

The permutation group S_n is the group of bijections of the set $\{1, 2, ..., n\}$.

It is convenient to denote permutations by

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$

Definition

For $\sigma \in S_n$ define $inv(\sigma)$ to be the number of pairs (*ij*) such that i < j but $\sigma(i) > \sigma(j)$. This number $inv(\sigma)$ is called the **number of inversions** of σ .

Definition

Define the sign of σ to be $sgn(\sigma) = (-1)^{inv(\sigma)}$.

Sasha Patotski (Cornell University)

• What is the sign of
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 6 & 7 & 2 & 5 \end{pmatrix}$$
?

- What is the sign of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 6 & 7 & 2 & 5 \end{pmatrix}$?
- Prove that for any permutation σ, composing it with a transposition of neighbors (i, i + 1) either creates a new inversion, or removes one.

- What is the sign of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 6 & 7 & 2 & 5 \end{pmatrix}$?
- Prove that for any permutation σ, composing it with a transposition of neighbors (i, i + 1) either creates a new inversion, or removes one.
- Thus composing any permutation σ with (i, i + 1) changes it's sign,
 i.e. sgn((i, i + 1) ∘ σ) = -sgn(σ).

- What is the sign of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 6 & 7 & 2 & 5 \end{pmatrix}$?
- Prove that for any permutation σ, composing it with a transposition of neighbors (i, i + 1) either creates a new inversion, or removes one.
- Thus composing any permutation σ with (i, i + 1) changes it's sign, i.e. sgn((i, i + 1) ∘ σ) = -sgn(σ).
- Thus for any representation of σ as a composition of N transpositions of neighbors, the sign $sgn(\sigma)$ is $(-1)^N$. (Need to be careful here.)

For $\sigma \in S_n$ define $inv(\sigma)$ to be the number of pairs (*ij*) such that i < j but $\sigma(i) > \sigma(j)$. This number $inv(\sigma)$ is called the **number of inversions** of σ .

- What is the sign of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 6 & 7 & 2 & 5 \end{pmatrix}$?
- Prove that for any permutation σ, composing it with a transposition of neighbors (i, i + 1) either creates a new inversion, or removes one.
- Thus composing any permutation σ with (i, i + 1) changes it's sign,
 i.e. sgn((i, i + 1) ∘ σ) = -sgn(σ).
- Thus for any representation of σ as a composition of N transpositions of neighbors, the sign sgn(σ) is (-1)^N. (Need to be careful here.)
- Prove that for two permutations σ, τ we have $sgn(\sigma \circ \tau) = sgn(\sigma)sgn(\tau)$.

(日) (同) (三) (三)

Sign of a permutation

Definition

If $sgn(\sigma) = 1$, σ is called an **even permutation**, otherwise it's called **odd**.

Sign of a permutation

Definition

If $sgn(\sigma) = 1$, σ is called an **even permutation**, otherwise it's called **odd**.

• Prove that any transposition is an odd permutation.

Sign of a permutation

Definition

If $sgn(\sigma) = 1$, σ is called an **even permutation**, otherwise it's called **odd**.

- Prove that any transposition is an odd permutation.
- Prove that any cycle of an even length is an odd permutation, and vice versa.

(Hint: decompose a cycle as a composition of transpositions.)

If $sgn(\sigma) = 1$, σ is called an **even permutation**, otherwise it's called **odd**.

- Prove that any transposition is an odd permutation.
- Prove that any cycle of an even length is an odd permutation, and vice versa.

(Hint: decompose a cycle as a composition of transpositions.)

 Thus sgn(σ) = (-1)^r where r is the number of cycles of even lengths in the cycle decomposition of σ.

If $sgn(\sigma) = 1$, σ is called an **even permutation**, otherwise it's called **odd**.

- Prove that any transposition is an odd permutation.
- Prove that any cycle of an even length is an odd permutation, and vice versa.

(Hint: decompose a cycle as a composition of transpositions.)

 Thus sgn(σ) = (-1)^r where r is the number of cycles of even lengths in the cycle decomposition of σ.

• Check that it works for
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 6 & 7 & 2 & 5 \end{pmatrix}$$

If $sgn(\sigma) = 1$, σ is called an **even permutation**, otherwise it's called **odd**.

- Prove that any transposition is an odd permutation.
- Prove that any cycle of an even length is an odd permutation, and vice versa.

(Hint: decompose a cycle as a composition of transpositions.)

 Thus sgn(σ) = (-1)^r where r is the number of cycles of even lengths in the cycle decomposition of σ.

• Check that it works for
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 1 & 6 & 7 & 2 & 5 \end{pmatrix}$$

Definition

Let $A_n \subset S_n$ be the subset consisting of even permutations. A_n is called an **alternating GROUP** (check that it's a group!)

Sasha Patotski (Cornell University)

-

-

Sam Loyd's puzzle

Sasha Patotski (Cornell University)

• Reading the puzzle left to right, top to bottom gives an element of $S_{\rm 15}.$

- Reading the puzzle left to right, top to bottom gives an element of S_{15} .
- Let *s* be the sign of the permutation you get, and let *r* be the number of the row containing the empty tile.

- Reading the puzzle left to right, top to bottom gives an element of S_{15} .
- Let *s* be the sign of the permutation you get, and let *r* be the number of the row containing the empty tile.
- Consider the number $X = s + r \mod 2$.

- Reading the puzzle left to right, top to bottom gives an element of S_{15} .
- Let *s* be the sign of the permutation you get, and let *r* be the number of the row containing the empty tile.
- Consider the number $X = s + r \mod 2$.
- Compute all these numbers for the position on the pictures before.

- Reading the puzzle left to right, top to bottom gives an element of S_{15} .
- Let *s* be the sign of the permutation you get, and let *r* be the number of the row containing the empty tile.
- Consider the number $X = s + r \mod 2$.
- Compute all these numbers for the position on the pictures before.
- What happens to X if you move the empty tile horizontally?

- Reading the puzzle left to right, top to bottom gives an element of S_{15} .
- Let *s* be the sign of the permutation you get, and let *r* be the number of the row containing the empty tile.
- Consider the number $X = s + r \mod 2$.
- Compute all these numbers for the position on the pictures before.
- What happens to X if you move the empty tile horizontally?
- Vertically?

- Reading the puzzle left to right, top to bottom gives an element of S_{15} .
- Let *s* be the sign of the permutation you get, and let *r* be the number of the row containing the empty tile.
- Consider the number $X = s + r \mod 2$.
- Compute all these numbers for the position on the pictures before.
- What happens to X if you move the empty tile horizontally?
- Vertically?
- Prove that Sam Loyd's puzzle can't be solved.